Fluoride Effects along the Reaction Pathway of Pyrophosphatase: Evidence for a Second Enzyme•Pyrophosphate Intermediate[†]

Alexander A. Baykov,*,‡ Igor P. Fabrichniy,‡ Pekka Pohjanjoki,§ Anton B. Zyryanov,‡ and Reijo Lahti*,§

A. N. Belozersky Institute of Physico-Chemical Biology and School of Chemistry, Moscow State University, Moscow 119899, Russia, and Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland

Received March 17, 2000; Revised Manuscript Received June 22, 2000

ABSTRACT: The fluoride ion is a potent and specific inhibitor of cytoplasmic pyrophosphatase (PPase). Fluoride action on yeast PPase during PP_i hydrolysis involves rapid and slow phases, the latter being only slowly reversible [Smirnova, I. N., and Baykov, A. A. (1983) *Biokhimiya 48*, 1643–1653]. A similar behavior is observed during yeast PPase catalyzed PP_i synthesis. The amount of enzyme•PP_i complex formed from solution P_i exhibits a rapid drop upon addition of fluoride, followed, at pH 7.2, by a slow increase to nearly 100% of the total enzyme. The slow reaction results in enzyme inactivation, which is not immediately reversed by dilution. These data show that fluoride binds to an enzyme•PP_i intermediate during the slow phase and to an enzyme•PP_i intermediate during the rapid phase of the inhibition. In *Escherichia coli* PPase, the enzyme•PP_i intermediate binds F⁻ rapidly, explaining the lack of time dependence in the inhibition of this enzyme. The enzyme•PP_i intermediate formed during PP_i hydrolysis binds fluoride much faster (yeast PPase) or tighter (*E. coli* PPase) than the similar complex existing at equilibrium with P_i. It is concluded that PPase catalysis involves two enzyme•PP_i intermediates, of which only one (immediately following PP_i addition and predominating at acidic pH) can bind fluoride. Simulation experiments have indicated that interconversion of the enzyme•PP_i intermediates is a partially rate-limiting step in the direction of hydrolysis and an exclusively rate-limiting step in the direction of synthesis.

The enzymes that catalyze reversible phosphoryl transfer from polyphosphates to water are fundamental to cell energetics, yet their mechanisms of action remain poorly understood. This enzyme group includes inorganic pyrophosphatase (EC 3.6.1.1; PPase),¹ which hydrolyzes pyrophosphate (PP_i) to orthophosphate (P_i), providing a thermodynamic pull for biosynthetic reactions (1). The two best studied PPases are those from *Saccharomyces cerevisiae* (Y-PPase) and *Escherichia coli* (E-PPase) (2, 3). Both of these enzymes require divalent metal ions for catalysis, with Mg²⁺ conferring the highest activity (4), and are active with either three or four magnesium ions per active site (5–7).

The currently accepted kinetic scheme of PPase catalysis involves substrate $(MgPP_i \text{ or } Mg_2PP_i)$ binding to a preformed enzyme• Mg^{2+} complex, P-O bond breakdown by direct attack of water (8), and stepwise dissociation of two phosphate molecules (Scheme 1). All the steps shown in Scheme 1 are readily reversible, allowing formation of appreciable amounts of enzyme-bound PP_i $(EM_{n+2}PP_i)$ from enzyme and P_i and explaining the rapid exchange of oxygen between [$^{18}O]P_i$ and [$^{16}O]$ water catalyzed by PPase (9).

Scheme 1:
$$PP_i - P_i$$
 Equilibration by $PPase^a$ $EM_2 - EM_{n+2}PP - EM_{n+2}P_2 - EM_{n+1}P - EM_2$ $^aE = enzyme, M = Mg, PP = PP_i, P = P_i, n = 1 or 2.$

PPase is one of a few enzymes inhibited at micromolar fluoride concentrations (10-12). The action of fluoride on Y-PPase (13), rat liver PPase (14), and the D67N variant of E. coli PPase (15) is biphasic: an instant (half-time <1 s) decrease in activity upon addition of fluoride to functioning enzyme is followed by a slower decline in the remaining activity on a time-scale of seconds or minutes, depending on inhibitor concentration. Fluoride is thus simultaneously a rapidly reversible and a tight, slowly binding inhibitor, according to the nomenclature of Morrisson and Walsh (16). In the slow phase, one PP_i molecule, two Mg²⁺ ions, and one F⁻ ion become trapped in PPase (17). This inactive complex, which can be isolated by gel filtration, decays, regenerating active enzyme with a half-time of \sim 1 h at 25 °C (18). Although fluoride can bind to Y-PPase in the absence of substrate, such binding is characterized by only moderate affinity ($K_d \approx 3$ mM) and is rapidly reversible (13). Fluoride and PPi thus mutually stimulate their binding to PPase. Interestingly, E. coli PPase is also strongly inhibited by F⁻, but the inhibition is of a rapidly reversible type (19, 20). It was initially suggested that PP_i becomes covalently bound to enzyme in the F⁻-stabilized complex (18), but later studies did not support this contention. The mechanism of PPase inhibition by fluoride remains to be determined.

Earlier studies of fluoride interaction with PPase have focused on the hydrolysis reaction. Here we investigate fluoride effects on the reverse PP_i synthesis reaction, as well

 $^{^\}dagger$ This work was supported by the Russian Foundation for Basic Research (Grants 97-04-48487, 00-04-48310, and 00-15-97907) and the Academy of Finland (Grants 35736 and 47513).

^{*} To whom correspondence should be addressed. A.A.B.: tel 095-939-5541, fax 095-939-3181, e-mail baykov@genebee.msu.su; R.L.: tel 358-02-3336845, fax 358-02-3336860, e-mail reijo.lahti@utu.fi.

^{*} Moscow State University.

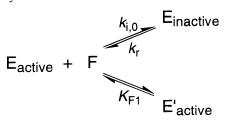
[§] University of Turku.

¹ Abbreviations: E-PPase, *Escherichia coli* PPase; PPase, inorganic pyrophosphatase; P_i, phosphate; PP_i, pyrophosphate; Y-PPase, yeast (*Saccharomyces cerevisiae*) PPase.

as on the enzyme•PP_i intermediate in both reactions. The results of these studies indicate the occurrence of two types of enzyme•PP_i intermediate in PPase catalysis and also show that the fast and slow phases of fluoride binding to Y-PPase designate different reaction intermediates in Scheme 1.

EXPERIMENTAL PROCEDURES

Enzymes. Expression and purification of Y-PPase was carried out as described by Heikinheimo et al. (21), using the overproducing $E.\ coli\ XL2blue^b$ strain transformed with a vector including the coding region of yeast PPA gene under the tac promoter. Enzyme concentration was calculated on the basis of the subunit molecular mass of 32 kDa (22) considering $A^{1\%}_{280}$ equal to 14.5 (4), or by the Bradford assay (23). Wild-type E-PPase was obtained as described by Salminen et al. (24) and quantified using $A^{1\%}_{280}$ equal to 11.8 (25). Stock enzyme solutions were made in 0.1 M Tris/HCl buffer (pH 7.2) containing 1 mM MgCl₂ and 50 μ M EGTA.


Methods. PP_i hydrolysis was assayed by continuously recording P_i liberation with an automatic P_i analyzer (26). For use in the inhibition studies, the inlet system of the analyzer was modified to decrease its dead-time to 1 s as described previously (13, 14). Measurements were carried out at constant concentrations of the substrate Mg₂PP_i (0.2 mM) and free Mg²⁺ (5 mM). Enzyme concentration was adjusted in order to get comparable absorbance values at different inhibitor concentrations.

PP_i synthesis was assayed continuously by an enzymecoupled procedure (27), using ATP-sulfurylase to convert the synthesized PP; into ATP, and using luciferase to monitor ATP formation. The assay mixture contained 20 mM potassium phosphate, 5 mM free Mg²⁺, 5 µL of luciferin/ luciferase solution (Sigma ATP assay mix, catalog no. FL-ASC, reconstituted with 5 mL of water), 0.7 unit/mL ATPsulfurylase (Sigma), 10 µM adenosine 5'-phosphosulfate, 1 mM dithiothreitol, 1 mg/mL bovine serum albumin, and buffer in a total volume of 0.2 mL. The reaction was initiated by adding PPase, and the time-course of luminescence was followed with an LKB model 1250 luminometer. Care was taken to ensure that the ATP-sulfurylase concentration was sufficiently high, so that PP_i conversion into ATP proceeded at least 20 times faster than PP_i formation. The luminescence versus time curves measured in the absence of fluoride were slightly curved because of slow inactivation of luciferase in the reaction medium. The procedure used to measure enzyme-bound PP_i formation at equilibrium was described previously (28).

MgF⁺ formation ($K_d = 48 \text{ mM}$; 29) was taken into account when calculating total MgCl₂ and free F⁻ concentrations in the assays. To avoid MgF₂ formation and precipitation in the reaction mixture, fluoride was added just before the reaction was started with PPase. Sodium fluoride (Ultra grade) was purchased from Sigma Chemical Co.

Except as noted, the following pH buffers were used (0.1 M ionic strength, 50 mM K⁺): 95 mM acetic acid/KOH, 100 μ M EGTA (pH 4.8); 63 mM MES/KOH, 37 mM KCl, 100 μ M EGTA (pH 5.5); 40 mM PIPES/KOH, 100 μ M EGTA (pH 6.3); 83 mM TES/KOH, 17 mM KCl, 50 μ M EGTA (pH 7.2); 90 mM TAPS/KOH, 5 μ M EGTA (pH 8.5). The media used in the incubations with P_i (synthesis of free and enzyme-bound PP_i) were prepared by mixing appropriate

Scheme 2: PPase Inactivation by Fluoride in the Course of PP_i Hydrolysis

volumes of 100 mM potassium phosphate, 100 mM MgCl₂, and the buffers mentioned above, except that 20 mM acetic acid/KOH buffer was used at pH 4.8 and appropriate volumes of 1 M KOH were added to neutralize protons released upon Mg²⁺•acetate complex formation. All experiments were performed at 25 °C.

Data Analysis and Calculations. The time course of Y-PPase inactivation during enzymatic reaction is described by Scheme 2, which implies two modes of fluoride binding—rapid (not resolved in time) binding, leading to partially active enzyme (E'_{active}), and slow binding, leading to completely inactive enzyme ($E_{inactive}$). F is fluoride, K_{F1} is the dissociation constant governing the rapid binding step, and $k_{i,0}$ and k_r are the forward second-order and the backward first-order rate constants governing the slow binding step, respectively.

At zero time, only E_{active} and E'_{active} are present. The initial velocity of PP_i hydrolysis in the presence of fluoride is given by eq 1, where v_0 and v'_0 are initial velocities at zero and infinite fluoride concentration, i.e., under conditions when all the enzyme is present as E_{active} or E'_{active} , respectively, and n=1. The apparent rate constant for slow fluoride binding, defined as $k_{i,app}=k_{i,0}[E_{active}]/([E_{active}]+[E'_{active}])$, is given by eq 2 with n=1. The time-course of P_i formation at fixed fluoride concentration is given by eqs 3 and 4, where α is the relative residual activity ($\alpha=\{[E_{active}]+v'_0[E'_{active}]/v_0]\}/[E]_t$). For fitting of eqs 3 and 4, each product formation curve was represented by 90-200 pairs of [P] and t values. The calculated and measured curves agreed within 3%. All fittings were carried out with the program SCIENTIST (MicroMath).

$$v_{0,\text{app}} = v'_0 + \frac{v_0 - v'_0}{1 + [F]^n / K_{FI}}$$
 (1)

$$k_{\text{i,app}} = \frac{k_{\text{i,0}}}{1 + [F]^n / K_{\text{F1}}}$$
 (2)

$$\frac{\mathrm{d[P]}}{\mathrm{d}t} = v_{0,\mathrm{app}}\alpha\tag{3}$$

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = k_{\mathrm{r}}(1 - \alpha) - k_{\mathrm{i,app}}[\mathrm{F}]\alpha \tag{4}$$

RESULTS

Inhibition of Y-PPase-Catalyzed PP_i Hydrolysis and Synthesis. Figure 1 compares the effects of fluoride on the product formation curves in the two directions of the PP_i \rightleftharpoons 2P_i equilibration by Y-PPase. In both directions, fluoride markedly decreased the initial velocity, with the effect on PP_i synthesis being larger than on PP_i hydrolysis at equal

Table 1: Parameters for Fluoride Inhibition of Y-PPase^a

source	substrate ^b	pН	k _{i,0} (mM ⁻¹ •min ⁻¹)	$k_{\rm r}~({\rm min^{-1}})$	$K_{\mathrm{F1}}{}^{c}$	$K_{\rm F2}~({ m mM})^d$	$\mathbf{v_0'}/\ v_0$
inhibition of PP _i hydrolysis	PP _i (0.32)	7.2	2.7 ± 0.3	≤ 0.03	2.3 ± 0.2	≤0.011	0.05 ± 0.01
		8.5	0.94 ± 0.03	≤ 0.03	6.4 ± 0.2	≤0.032	≤0.02
inhibition of PP _i synthesis	$P_{i}(20)$	7.2			1.6 ± 0.2		
inactivation in equilibrated	P _i (20)	7.2	0.21 ± 0.02	0.012 ± 0.002	0.65 ± 0.07	0.058	
$PP_i \rightleftharpoons 2P_i$ system	$P_i(2)$	7.2	0.023 ± 0.004	0.012^{e}	0.9 ± 0.3		

^a Measured at 5 mM free Mg²⁺. ^b Value in parentheses refers to total substrate concentration in millimoles per liter. ^c The units for K_{F1} are mM (inhibition of PP_i hydrolysis) or mM² (in all other cases). ${}^{d}K_{F2} = k_{r}/k_{i,0}$. Constrained at this value in the calculations.

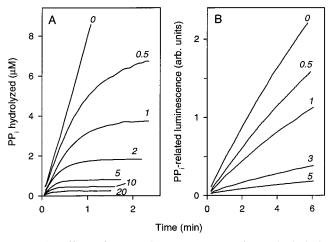


FIGURE 1: Effects of NaF on the progress curves for PP_i hydrolysis (A) and PP_i synthesis (B) catalyzed by Y-PPase at pH 7.2. One unit of luminescence corresponds to 1 μ M PP_i at zero time (luciferase fully active). NaF concentrations (mM) are indicated on the curves. Curves were normalized to 1.25 nM enzyme concentration.

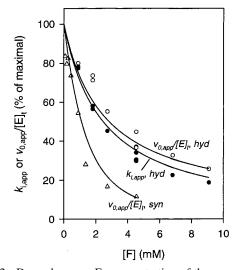


Figure 2: Dependence on F^- concentration of the $v_{0,\mathrm{app}}$ and $k_{\mathrm{i,app}}$ values derived from the progress curves of PPi hydrolysis and synthesis by Y-PPase at pH 7.2. Lines were obtained with eqs 1 and 2 using parameter values found in Table 1 and the n values indicated below. Open circles, $v_{0,app}$ for PP_i hydrolysis (n = 1); triangles, $v_{0,app}$ for PP_i synthesis (n = 2); filled circles, $k_{i,app}$ for PP_i hydrolysis (n = 1).

fluoride concentrations (Figure 2). In contrast, the slow phase of PPase inactivation during enzymatic reaction was much slower in the synthesis reaction, as indicated by the straighter product formation curves at equal fluoride concentrations (Figure 1).

The dependence of $v_{0,app}$ and $k_{i,app}$ on inhibitor concentration estimated from PP_i hydrolysis data with eqs 3 and 4 (Figure 1A) obeyed eqs 1 and 2, respectively, with very similar K_{F1} values (Figure 2), and thus agreed with Scheme 2. The numerical values of all parameters controlling fluoride inhibition of PPase in the hydrolysis reaction were obtained by simultaneously fitting all curves in Figure 1A to eqs 1-4, and are listed in Table 1. At the higher pH value the inhibition of PP_i hydrolysis is weaker in terms of both $k_{i,0}$ and K_{F1} , and v_0' is smaller.

In the synthesis reaction, only $v_{0,app}$ values, but not $k_{i,app}$ values, could be estimated with eqs 3 and 4 from the product formation curves shown in Figure 1B, because of difficulty with spontaneous inactivation of luciferase, indicated by the nonlinear luminescence versus time curve in the absence of fluoride (Figure 1B). In contrast to the hydrolysis data, the $v_{0,app}$ versus [F] profile could be described only poorly by eq 1 with n = 1, and necessitated the use of n = 2, indicating that two fluoride ions are bound. The general form of the denominator of eq 1 in this case is $1 + a[F] + b[F]^2$, where a and b are constants. However, the fitting indicated that the term a[F] is insignificant, which means that the two fluoride ions are bound in a strongly cooperative manner.

Inactivation of Y-PPase Equilibrated with Pi. Strong support for the binding of two F⁻ ions to Y-PPase was obtained by measuring Y-PPase inactivation in the equilibrated $PP_i \rightleftharpoons P_i$ system (Figure 3). In these experiments, Y-PPase was incubated with fluoride, P_i, and Mg²⁺ in the absence of the enzyme-coupled system used in PPi synthesis measurements. At the high enzyme concentration used, the $PP_i \rightleftharpoons P_i$ reaction in solution (but not on the enzyme) came to equilibrium during the first seconds of incubation, both in the absence and in the presence of fluoride. Aliquots of the incubation mixture were withdrawn and diluted 900-4500-fold with the assay mixture, and the residual hydrolytic activity was measured, giving the data shown in Figure 3. Because of the extensive dilution, the rapid phase of the inactivation was reversed, and thus only the extent of the slowly reversible phase governed by $k_{i,app}$ was measured. The final value of α, corresponding to equilibrium between enzyme and F⁻ [$\alpha_{eq} = 1/(1 + k_{i,app}[F]/k_r)$], exhibited a bellshaped dependence on [F] (Figure 3, inset). In contrast, eq 2 predicts a monotonical change in α_{eq} at n = 1, which implies binding of only one fluoride ion. A satisfactory fit to the data shown in Figure 3 was obtained when eq 1 was used in combination with eq 2, in which n was set to 2. The value of K_{F1} estimated by this fitting (Table 1) agrees with the value derived from the analysis of PP_i synthesis in solution.

An identical analysis of fluoride inhibition was performed at 2 mM P_i concentration (data not shown). The results were qualitatively similar, but the maximum degree of inhibition (observed again at 1 mM fluoride) was only 50%. This resulted from a 9-fold decrease in $k_{i,0}$. Significantly, the value

Table 2: pH Dependence of Y-PPase Inactivation and Enzyme-Bound PP_i Formation in the Presence of Fluoride^a

			inactiva	tion ^b	enzyme-bound PP _i formation ^c			
pН	$[\mathrm{Mg}^{2+}]$ (mM)	$\left[P_{i}\right]\left(mM\right)$	$k_{i,app} (\text{mM}^{-1} \cdot \text{min}^{-1})$	$k_{\rm r}({\rm min}^{-1})$	$k_{i,app} (\text{mM}^{-1} \cdot \text{min}^{-1})$	$f_{ m epp,0}$	$f_{ m epp}^{ m fast}$	
4.8	40	40	0.070 ± 0.004	0.010 ± 0.001	0.081 ± 0.003	0.010 ± 0.002	0.0085 ± 0.0024	
5.5	20	20	0.064 ± 0.011	0.0087 ± 0.003	0.070 ± 0.004	0.043 ± 0.003	0.018 ± 0.004	
6.3	20	20	0.157 ± 0.010	0.015 ± 0.002	0.105 ± 0.013	0.193 ± 0.006	0.074 ± 0.015	
7.2	5	20	0.030 ± 0.002	0.016 ± 0.003	0.017 ± 0.001	0.16 ± 0.02	0.053 ± 0.005	
8.5	5	10			< 0.0002	0.153 ± 0.007	0.011 ± 0.002	
					$(0.9 \pm 0.2)^d$		$(0.063 \pm 0.006)^d$	

^a NaF concentration was 1 mM (pH 4.8) or 2 mM (other pH values). ^b Parameters obtained with eq 4. ^c Parameters, except for $f_{epp,0}$, obtained with eqs 5 and 6. ^d Determined from the time course of f_{epp} decline.

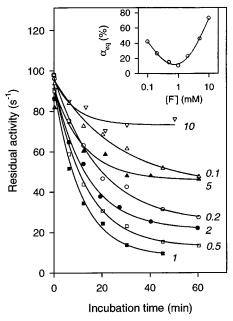


FIGURE 3: Time-courses of Y-PPase inactivation during incubation with NaF in the presence of 5 mM free Mg $^{2+}$ and 20 mM total P_i at pH 7.2. NaF concentrations (mM) are indicated on the curves. The reaction was carried out at 25 °C in a total volume of 70 μL at 3.6 μM enzyme concentration. Aliquots of 2–12 μL were withdrawn at the indicated time intervals, and the residual activity of PPase was measured in medium containing 1 mM PP_i, 0.2 mM MgCl₂, 10 μM EGTA, and 0.05 M Tris-HCl, pH 8.5. Lines were obtained with eqs 2 (n=2) and 4 using parameter values found in Table 1. Inset: the residual activity of Y-PPase at infinite time ($\alpha_{\rm eq}$) as a function of F^- concentration.

of $K_{\rm F1}$ was only slightly changed between 2 and 20 mM $P_{\rm i}$ concentrations (Table 1).

A more trivial explanation of the unusual effect of F-concentration on the inactivation seen in Figure 3 could be sequestration of F^- because of MgF_2 formation during the incubation, to the extent that its solubility product $(10^{-8.2} \, \mathrm{M}^3; \, 30)$ was exceeded at $\geq 2 \, \mathrm{mM} \, F^-$. However, earlier measurements done with an Mg^{2+} -sensitive electrode indicated that MgF_2 is formed quite slowly on the time scale of the assays (31). The data shown in Figure 4 provide further support for this contention. Addition of fresh enzyme to the system equilibrated at 5 mM NaF resulted in an identical inactivation profile, whereas addition of 9 mM NaF to the system equilibrated at 1 mM NaF resulted in partial reactivation, approaching the level observed in the forward reaction at 10 mM F^- (Figure 3).

The value of $k_{i,app}$ was pH-dependent (Table 2). No inactivation was observed at pH 8.5, indicating a value of $k_{i,app}$ close to zero, because the value of k_r (measured in PP_i

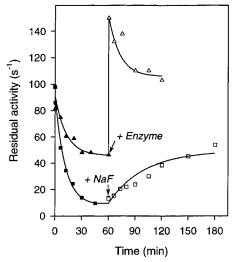


FIGURE 4: Controls demonstrating no fluoride ion sequestration because of MgF_2 precipitation in the experiments shown in Figure 3. After 60 min incubation with 1 mM NaF (closed squares) or 5 mM NaF (closed triangles) under conditions identical to those used for Figure 3, an additional 9 mM NaF (open squares) or an equal amount of fresh Y-PPase (open triangles) was added, and activity changes were followed for a further 60 min. The lines were obtained with eqs 2 (n=2) and 4 as for Figure 3, taking into account changes in enzyme and inhibitor concentrations. 100% activity refers to the enzyme initially present in the incubation mixtures.

hydrolysis) is not changed between pH 7.2 and 8.5 (18, 31; see also Table 1). The data in Table 2 show that k_r remains virtually constant down to pH 4.8.

Effect on Enzyme-Bound PPi Formation by Y-PPase. About one-sixth of Y-PPase equilibrated with 20 mM P_i and 5 mM Mg²⁺ contained enzyme-bound PP_i at both pH 7.2 and pH 8.5 (Figure 5), in agreement with published data (9, 14, 32). Addition of fluoride caused an instant (half-time ≤ 12 s) drop in the amount of the enzyme•PP_i complex (f_{enp}) followed, at pH 7.2, by a gradual rise to a level similar to (10 mM NaF) or markedly exceeding (2 mM NaF) the level observed before the addition of NaF (Figure 5). Similar dependencies were obtained at pH 6.3, 5.5, and 4.8 (data not shown). At pH 7.2, the initial drop in f_{epp} was larger at higher [F]. In contrast, no rise in f_{epp} (<0.005 in 100 min) was observed at pH 8.5. Moreover, the initial drop clearly occurred in two steps: an instant (half-time <12 s) decrease to 0.079 \pm 0.015 and a slower (half-time of 20 \pm 5 s) decrease to 0.012 ± 0.002 (Figure 5, inset). The timedependent rise in $f_{\rm epp}$ at pH \leq 7.2 can be approximated by eqs 5 and 6, where $f_{\rm epp}^{\rm fast}$ refers to the fraction of enzyme• PPi complex after completion of the fast phase of the interaction with F⁻ (i.e., the zero-time point for the slow phase) and $f_{\rm epp}^{\rm slow}$ is the fraction of enzyme•PP_i complex

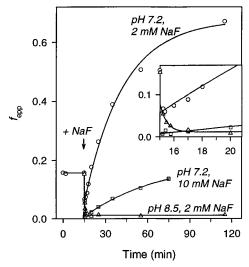


Figure 5: Time-courses of f_{epp} upon addition of NaF to Y-PPase (0.13-0.16 mM) preequilibrated with 5 mM free Mg²⁺ and 20 mM total Pi. Values of pH and NaF concentrations are indicated on the curves. The reaction was carried out at 25 °C in a total volume of 230 μ L. Aliquots of 20 μ L were withdrawn at the indicated time intervals, quenched with 4 μ L of 5 M trifluoroacetic acid, and assayed for PP_i . The lines showing increase in f_{epp} were calculated with eqs 5 and 6 using parameter values found in Table 2. Inset: same data on a different time scale. The line for pH 8.5 was obtained with the equation: $f_{\rm epp} = f_{\rm epp}^{\rm fast} + (f_{\rm epp}^{\rm int} - f_{\rm epp}^{\rm fast}) {\rm e}^{-kt}$, where $f_{\rm epp}^{\rm fast} = 0.012$, $f_{\rm epp}^{\rm int} = 0.079$, and $k = 1.8~{\rm min}^{-1}$.

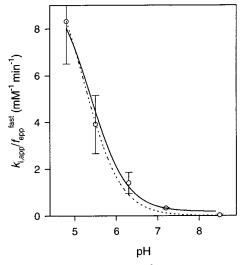


FIGURE 6: pH-dependence of $k_{\rm i,app}/f_{\rm epp}$ fast calculated from the data on EPP_i formation shown in Table 2. See text for details.

accumulated at time t during the slow phase. The values of $k_{\text{i-app}}$ and $f_{\text{epp}}^{\text{fast}}$ thus obtained are summarized in Table 2. Values of k_r were too small to be estimated in this way and were thus constrained to the values determined above from PPase inactivation (Table 2).

$$f_{\rm epp} = f_{\rm epp}^{\rm slow} + f_{\rm epp}^{\rm fast} (1 - f_{\rm epp}^{\rm slow})$$
 (5)

$$\frac{\mathrm{d}f_{\mathrm{epp}}^{\mathrm{slow}}}{\mathrm{d}t} = k_{\mathrm{i,app}}[F^{-}](1 - f_{\mathrm{epp}}^{\mathrm{slow}}) - k_{\mathrm{r}}f_{\mathrm{epp}}^{\mathrm{slow}} \qquad (6)$$

The slow rise in f_{epp} clearly reflects fluoride binding to enzyme•PPi complex, the true rate constant for this reaction being $k_{i,app}/f_{epp}^{fast}$. Its pH-dependence (Figure 6) can be described by a curve for a single ionization with a pK_a of

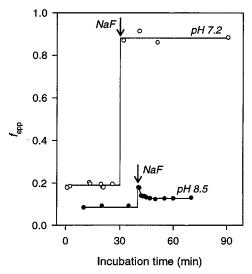


FIGURE 7: Time-courses of $f_{\rm epp}$ upon addition of 2 mM NaF to E. coli PPase (30-140 μ M) preequilibrated with 5 mM free Mg²⁺ and 20 mM total P_i (pH 7.2) or 10 mM total P_i (pH 8.5). Other conditions were as for Figure 5. The arrows mark the moments of fluoride addition. Open symbols, pH 7.2; closed symbols, pH 8.5.

 5.4 ± 0.2 and limiting values of $k_{\rm i,app}/f_{\rm epp}$ fast of 0.17 ± 0.04 and $10 \pm 2 \text{ mM}^{-1} \cdot \text{min}^{-1}$ in the alkaline and acidic regions, respectively. Assuming zero limit in the alkaline region (dotted curve) led to a poorer fit to the points measured at pH 6.3 and 7.2.

Identification of Y-PPase Species Stabilized by F⁻ during Hydrolysis at pH 8.5. At pH 7.2, the slow phase of Y-PPase inactivation in both hydrolysis (17) and synthesis (see above) corresponds to F⁻ binding to the enzyme•PP_i complex. No slow inhibition phase was observed at pH 8.5 in the presence of Pi; moreover, a slow binding of F- to an enzyme Pi intermediate was detected (Figure 5, inset), presenting the possibility that this binding is responsible for the slow inactivation of Y-PPase during PP_i hydrolysis at pH 8.5 (Table 1). This was tested by measuring the PP_i content of Y-PPase inactivated at pH 8.5 in the presence of PP_i. After a 3 min incubation of 6.3 μ M enzyme with 1 mM PP_i in the presence of 5 mM MgCl₂, the PP_i concentration dropped to its equilibrium value of $0.6 \mu M$, consistent with high catalytic activity of Y-PPase. If, however, 10 mM NaF was present during this incubation, the concentration of the remaining PP_i was significantly higher (2.9 μ M), and the enzyme was inactivated by 20%. Further incubation for 3 min upon addition of the same amount of fresh enzyme only slightly decreased the PP_i level (to $2.2 \mu M$). These data show that F^- mediated the incorporation of 1.6 μ M PP_i into Y-PPase, which corresponds to 25% of the total enzyme. The latter value correlates with the degree of enzyme inactivation. Thus, the slow inactivation of Y-PPase during hydrolysis results from fluoride binding to the enzyme PPi complex at both pH 7.2 and pH 8.5.

Fluoride Effects on E-PPase. Addition of NaF to E-PPase preequilibrated with P_i caused a rapid rise (half-time < 15 s) in f_{epp} at pH 7.2 and 8.5 (Figure 7), indicating F⁻ binding to an enzyme PPi complex. At pH 8.5, the rise was followed by a slower decline, showing that PP_i-free enzyme also binds F⁻, but at a lower rate. The final equilibrium level of f_{epp} exhibited a bell-shaped dependence on fluoride concentration (Figure 8). At pH 8.5, the final level measured at high

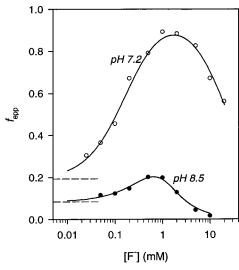


FIGURE 8: Equilibrium value of $f_{\rm epp}$ for *E. coli* PPase as a function of fluoride concentration at two pH values. The lines were obtained with eq 7, using parameter values found in Table 3.

 Table 3: Parameters for Fluoride Binding to E.~coli PPase

 enzyme-bound PP_i formation
 inhibition of hydrolysis

 pH
 K_{F1} (mM²)
 K_{F2} (mM)
 $f_{epp.0}$ K_{I} (μ M)

 7.2
 3.2 ± 0.2 0.16 ± 0.01 0.19 ± 0.01 15 ± 1

 8.5
 0.50 ± 0.05 1.9 ± 0.2 0.086 ± 0.003 37 ± 1

fluoride concentration was below the level measured without fluoride, indicating greater fluoride binding affinity of the PP_i -free enzyme compared to the enzyme• PP_i complex. The dependencies of f_{epp} on [F] at equilibrium can be fit with eq 7, yielding the dissociation constants K_{F1} and K_{F2} , governing fluoride binding to PP_i -free enzyme and the enzyme• PP_i complex, respectively; as well as $f_{epp,0}$, the value of f_{epp} in the absence of fluoride (Table 3). Equation 7 assumes that the enzyme• PP_i complex binds one and the PP_i -free enzyme binds two F^- ions; otherwise, a bell-shaped f_{epp} profile, such as seen in Figure 8, would not be obtained. Sequestration of fluoride by its binding with the enzyme was taken into account when fitting eq 7 to the data in Figure 8.

$$f_{\text{epp}} = \frac{1}{1 + \frac{(1/f_{\text{epp},0} - 1)(1 + [F]^2/K_{\text{Fl}})}{1 + [F]/K_{\text{F2}}}}$$
(7)

 F^- inhibition of E-PPase during PP_i hydrolysis was attained rapidly at both pH 7.2 and pH 8.5, confirming earlier data (19, 20). The inhibition was observed at relatively low fluoride concentrations, and the dependence of activity on [F] was hyperbolic (Figure 9), indicating binding of only one F^- ion. These features of the inhibition suggest that fluoride mainly binds to an enzyme PP_i species. The value of the inhibition constant K_I , estimated from the data in Figure 9 with an equation similar to eq 1 with n=1 but using K_I instead of K_{FI} , was less by a factor of 11 at pH 7.2 and by 51 at pH 8.5 than the corresponding value of K_{F2} obtained from the effect on f_{epp} (Table 3).

DISCUSSION

Kinetic Scheme of Inhibition. Earlier studies have established that fluoride inhibition of PP_i hydrolysis by yeast and

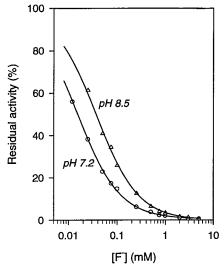


FIGURE 9: Fluoride inhibition of *E. coli* PPase at two pH values. At each pH value, 100% refers to the activity measured in the absence of fluoride. The lines were obtained with eq 1, in which $K_{\rm Fl}$ was replaced by $K_{\rm I}$, using n=1 and parameter values found in Table 3.

rat liver PPases occurs in two phases—fast and slow, and that a PP_i molecule is trapped in the active site in the slow phase (13, 14). It was suggested that the two phases reflect fluoride binding to the enzyme•PP_i intermediate and isomerization of the resulting ternary complex, respectively. The results of the present study provide a different explanation of the unusual time-course of inhibition, as shown in Scheme 3. Its salient feature is that the slow and the fast phases of the inhibition are bimolecular binding reactions involving different enzyme species—enzyme•PP_i and enzyme•P_i complexes, respectively. Furthermore, Scheme 3 differs from Scheme 1 in having two enzyme•PP_i intermediates (one of these can be protonated).

Slow binding of fluoride to the enzyme PP_i complex is indicated by its accumulation in the reaction medium in the presence of Mg-PP_i (17) or Mg-P_i (Figure 5). In contrast, the amount of the enzyme PPi complex is decreased during the fast phase of the interaction with fluoride in the Mg-Pi system (Figure 5). This can only happen if fluoride binds to an enzyme species lacking bound PPi, and thus decreases the amount of enzyme available to form the PP_i complex. There are three such species in Scheme 3: EM_2 , $EM_{n+2}P_2$, and EM_{n+1}P. From the Michaelis constant of 0.8 μ M for PP_i, the dissociation constants governing successive binding of two MgP_i molecules to Y-PPase (0.62 and 2.7 mM; 34), and the equilibrium constant $[EM_{n+2}P_2]/([EM_{n+2}PP^*] +$ $[HEM_{n+2}PP^*]$ = 4.65 (33), one can calculate that EM_2 accounts for <2% of the total enzyme under the conditions used for Figures 1A and 5. Keeping in mind the rather low affinity of EM₂ for F⁻ ($K_d \sim 3$ mM; 13), one can thus conclude that EM2 does not contribute significantly to the observed fluoride binding. Furthermore, considering that a 10-fold change in P_i concentration at pH 7.2 had only a small effect on K_{F1} (Table 1), it is more likely that $EM_{n+1}P$, and not $EM_{n+2}P_2$, binds fluoride during the fast phase of inhibition. From the values of the MgP_i binding constants listed above, one can calculate that the fraction of $EM_{n+2}P_2$ decreases from 59 to 11% and that of $EM_{n+1}P$ increases from 26 to 47% when the Pi concentration is decreased from 20 to 2 mM. The effect of P_i concentration on K_{F1} thus correlates

Scheme 3: PP_i-P_i Equilibration by Y-PPase and Its Inhibition by Fluoride^a

$$EFM_{n+2}PP^*$$

$$\downarrow ?$$

$$EM_{2} \xrightarrow{k_{1}} \begin{cases} EM_{n+2}PP^* \\ k_{ES} \end{cases} \begin{cases} EM_{n+2}PP^* \\ k_{B} \end{cases} EM_{n+2}PP \xrightarrow{k_{3}} EM_{n+2}P_{2} \xrightarrow{k_{6}} EM_{n+1}P \xrightarrow{k_{7}} EM_{2} \end{cases} \\ k_{F} \text{ (fast)} \end{cases}$$

$$\downarrow k_{F} \text{ (fast)} \text{ (fast)} \end{cases}$$

$$\downarrow k_{F} \text{ (fast)} \text{ ($$

^a The fluoride complex of EM_{n+1}P corresponds to the complex formed in the Mg-P_i system. Values for the rate constants and K_F are for pH 7.2; values of k_3-k_6 are from Baykov and Shestakov (33).

better with its effect on the amount of $EM_{n+1}P$, although the possibility that $EM_{n+1}P_2$ also has some affinity for fluoride cannot be excluded.

During the fast phase, two fluoride ions are bound to Y-PPase in the presence of P_i, but only one is bound in the presence of PP_i. This could result if the second F⁻ ion is inhibitory in PP_i synthesis but not in PP_i hydrolysis, and this explanation is consistent with k_s and k_h being controlled by different rate constants (Scheme 3). Another possibility is that the time needed for the second F⁻ ion to bind is greater than the lifetime of the $EM_{n+1}P$ species (which is in the millisecond range) in the hydrolysis reaction. That the "fast" phase is not extremely fast is indicated by the fact that its time course is clearly resolved at pH 8.5 (Figure 5).

The data measured for E-PPase are also consistent with Scheme 3. Fluoride addition to E-PPase preequilibrated with MgP_i at pH 8.5 (Figure 7) results in a rapid rise in f_{epp} (fluoride binding to an enzyme PPi complex) followed by its slow decline (fluoride binding to an enzyme species lacking bound PP_i, presumably an enzyme P_i complex). The two enzymes differ in that the enzyme PP_i species binds fluoride slowly in Y-PPase (Figure 5) and rapidly in E-PPase (Figure 7). In contrast, the enzyme P_i species behave similarly in the two PPases: they bind instantly at pH 7.2 and with a measurable rate at pH 8.5 (Figures 5 and 7). As with Y-PPase, the E-PPase enzyme P_i species binds more F ions than the enzyme PP_i species; otherwise the equilibrium levels of f_{epp} , rather than passing through a maximum (Figure 8), would monotonically increase or decrease with [F], depending on the relative affinities of the enzyme•PP_i and enzyme P_i species.

A Second Enzyme•PP_i Intermediate. Perhaps the most important finding of the present study is that the enzyme. PP_i complexes formed in the Mg-P_i and Mg-PP_i systems display different reactivity toward fluoride. The true rate

constant for fluoride binding to this species in the Mg-P_i system $(k_{i,app}/f_{epp}^{fast})$ is 0.32-0.57 mM⁻¹·min⁻¹ at pH 7.2 (the upper limit was obtained from the $k_{i,app}$ value derived from enzyme inactivation) and <0.02 mM⁻¹·min⁻¹ at pH 8.5 (Table 2). The corresponding rate constant in the Mg-PP_i system is given by $k_{i,0}/f_{\text{epp,ss}}$, where $f_{\text{epp,ss}}$ is the fraction of the enzyme containing bound PPi during steady-state hydrolysis. As $f_{\text{epp,ss}}$ is less than unity, $k_{i,0}/f_{\text{epp,ss}}$ is greater than $k_{i,0}$, i.e., 2.7 and 0.94 mM⁻¹·min⁻¹ at pH 7.2 and 8.5, respectively (Table 1). For E-PPase, the apparent affinities of the enzyme PPi complexes to fluoride measured in the Mg-P_i and Mg-PP_i systems differ 11-fold at pH 7.2 and 51-fold at pH 8.5, whereas the amounts of these complexes differ in the two systems less than 5.3-fold and 12-fold, respectively (these upper limits were estimated assuming $f_{\text{epp,ss}} = 1$) (Table 3).

The only explanation for this apparent discrepancy is that there are at least two enzyme PP_i intermediates reacting with fluoride with substantially different rates and/or affinities (we assumed that one does not react at all) and that the fraction of the more reactive intermediate in the total pool of the enzyme•PPi intermediates is greater during steady-state hydrolysis than at equilibrium with P_i. The steady-state concentration of each intermediate in a reaction involving several consecutive steps, like that shown in Scheme 3, is less than predicted by its equilibrium with the preceding intermediate. Therefore, only $EM_{n+2}PP^*$ (together with its protonated form $HEM_{n+2}PP^*$) can be present at a concentration exceeding that required by the equilibrium governed by $K_{AB} = k_A/k_B$ during steady-state hydrolysis. This idenifies this intermediate as the target for fluoride in the slow phase, and the pH-dependence shown in Figure 6 suggests that $\text{HEM}_{n+2}\text{PP*}$ is the major binding species at pH <7. EM_{n+2} -PP* may also bind fluoride if the limiting value of $k_{i,app}$ / $f_{\rm epp}^{\rm fast}$ at high pH in Figure 6 (0.17 mM⁻¹·min⁻¹) refers to this species, but this value may also refer to $EM_{n+2}PP$. Equilibrium between $EM_{n+2}PP^*$ and $HEM_{n+2}PP^*$ appears to be always attained because this conversion is not on the main reaction route. Independent support for Scheme 3 comes from recent pre-steady-state measurements of PP_i hydrolysis by Y-PPase, which also indicated two enzyme• PP_i intermediates (Halonen et al., manuscript in preparation).

Rate and Equilibrium Constants for Scheme 3. The observation of a second enzyme•PP_i intermediate has important consequences for the determination of the rate constants for the individual catalytic steps of PPase catalysis. The currently used procedure (28) was formulated for Scheme 1 which has only one such intermediate. This procedure relies heavily on measurements of [18 O]P_i—[16 O]- 16 O]- 16 O] oxygen exchange and enzyme-bound PP_i formation, and starts from k_3 calculation. Oxygen exchange measurements yield two important parameters: the rate of the exchange $(v_{ex}/[E]_t)$ and the partition coefficient, $P_c = k_4/(k_4 + k_5)$, which is calculated from the distribution of five P_i species having from zero to four 18 O atoms during the exchange (35). For Scheme 3, the expressions for $v_{ex}/[E]_t$ (36) and f_{epp} are given by eqs 8 and 9:

$$\frac{v_{\text{ex}}}{[\text{E}]_{\text{t}}} = \frac{k_5 K_3 P_{\text{c}}}{(1 + K_3 + 1/K_{\text{AB}})(1 - 0.75 P_{\text{c}})\Sigma}$$
(8)

$$f_{\rm epp} = \frac{1 + 1/K_{\rm AB}}{(1 + K_3 + 1/K_{\rm AB})\Sigma} \tag{9}$$

where $\Sigma = 1 + (K_3K_5/[\mathrm{MP}] + K_3K_5K_7/[\mathrm{MP}]^2)/(1 + K_3 + 1/K_{\mathrm{AB}})$, $K_3 = k_3/k_4$, $K_5 = k_5/k_6$, $K_7 = k_7/k_8$, and $K_{\mathrm{AB}} = [\mathrm{EM}_{n+2}\mathrm{PP}]/([\mathrm{EM}_{n+2}\mathrm{PP}^*] + [\mathrm{HEM}_{n+2}\mathrm{PP}^*])$. From eqs 8 and 9 and the expression for P_{c} , eq 10 can be derived, which differs from the equation previously used to estimate k_3 (28) by having a $(1 + 1/K_{\mathrm{AB}})$ term in the numerator. Knowledge of K_{AB} is thus required for k_3 determination.

$$k_3 = \frac{v_{\text{ex}}(1 - 0.75P_{\text{c}})(1 + 1/K_{\text{AB}})}{f_{\text{enp}}(1 - P_{\text{c}})[E]_{\text{t}}}$$
(10)

In contrast, values of k_4 and k_5 can be estimated without knowing K_{AB} . The value of k_4 is equal to k_3/K_3 , where K_3 is obtained from $f_{\rm epp}^{\rm lim}$, the limiting value of $f_{\rm epp}$ at infinite [MP] $(\Sigma = 1 \text{ in eq } 9)$, as $(1/f_{\text{epp}})^{\text{lim}} - 1)(1 + 1/K_{AB})$. From this and eq 10, one gets eq 11 for k_4 . This, in turn, allows calculation of k_5 from P_c . Finally, k_6 is calculated as k_5/K_5 , where K_5 is obtained from the saturation function Σ for $v_{\rm ex}/[{\rm E}]_{\rm t}$ (eq 8) or f_{epp} (eq 9). Up to this point, all the calculations employed only parameter values measured under equilibrium conditions. Values of k_7 (and hence k_8) cannot be calculated from measured k_h , as was done previously (32), because k_h will also depend on k_A and k_B (eq 12); the same applies to the calculations of k_1 from $k_h/K_{m,h}$ and of k_2 from k_s (see eqs 13 and 14, respectively). In eqs 12 and 13, k_A and k_2 are the apparent rate constants referring to the sum of $EM_{n+2}PP^*$ and $\text{HEM}_{n+2}\text{PP*}$. Equations 12-14 were derived using the method of net rate constants (37, 38).

$$k_4 = \frac{v_{\text{ex}}(1 - 0.75P_{\text{c}})}{f_{\text{epp}}(1 - P_{\text{c}})(1/f_{\text{epp}}^{\text{lim}} - 1)[E]_{\text{t}}}$$
(11)

$$\frac{1}{k_{\rm h}} = \frac{1}{k_{\rm A}} + \frac{1 + 1/K_{\rm AB}}{k_3(1 - P_c)} + \frac{1}{k_5} + \frac{1}{k_7}$$
 (12)

$$\frac{k_{\rm h}}{K_{\rm m,h}} = \frac{k_1 k_{\rm A}}{k_2 [1 + k_{\rm B}/k_3 (1 - P_{\rm c})]}$$
(13)

$$\frac{1}{k_{\rm s}} = \frac{1 + K_{\rm AB} + K_{\rm AB} K_3}{k_2} + \frac{1 + K_3}{k_{\rm B}} + \frac{1}{k_4} \tag{14}$$

Thus, in summary, the previous estimates of k_4 (222–350 s⁻¹), k_5 (740–800 s⁻¹), and k_6 (1.64 × 10⁵ to 3 × 10⁵ M⁻¹·s⁻¹) (32, 33) are true, and the estimate of k_3 (1070–1400 s⁻¹) is true provided that $K_{AB} \gg 1$, but the previous estimates of k_1 , k_2 , k_7 , and k_8 need to be reconsidered.

The estimation of the latter four constants, as well as estimation of k_A and k_B , requires additional information, which can be extracted from the fluoride inhibition data. We will illustrate this by making calculations for Y-PPase using the data previously collected at pH 7.2, 5 mM Mg²⁺, and 0.1 M ionic strength (33), i.e., under conditions used in this work. In the presence of 2 mM NaF at pH 7.2, the fraction of $HEM_{n+2}PP^*$ in the total pool of the enzyme PP_i complexes at equilibrium with P_i in solution can be calculated as (0.32) -0.17/(10 - 0.17) = 0.0153, where 0.32 is the value of $k_{i,app}/f_{epp}^{fast}$ at pH 7.2 (Table 2), and 10 and 0.17 are the limiting values of $k_{i,app}/f_{epp}$ at low and high pH values (Figure 6). Since the total fraction of enzyme PP_i complexes is 0.053 under these conditions (see $f_{\rm epp}^{\rm fast}$ in Table 2), the contribution of HEMn₊₂PP* will be $0.0153 \times 0.053 =$ 0.00081. The value of $k_{i,0}$ in hydrolysis (2.7 mM⁻¹·min⁻¹) is greater by a factor of 159 than $k_{i,app}$ at equilibrium with P_i $(0.017 \text{ mM}^{-1} \cdot \text{min}^{-1})$; hence, the fraction of HEM_{n+2}PP* is $0.00081 \times 159 = 0.129$ in hydrolysis. The fraction of EM_{n+2}-PP* cannot then exceed 1 - 0.129 = 0.871, and, accordingly, the ratio $[EM_{n+2}PP^*]/[HEM_{n+2}PP^*]$ must be smaller than 0.871/0.126 = 6.75. The latter estimate is also applicable to the Mg²⁺ $-P_i$ system, leading to $[EM_{n+2}PP^*]/[E]_t \le 0.00081$ \times 6.75 = 0.0055 and, accordingly, $[EM_{n+2}PP]/[E]_t < 0.053$ -0.00081 - 0.0055 = 0.0467. Therefore, the lower and upper limits of $K_{AB} = [EM_{n+2}PP]/([HEM_{n+2}PP^*] + [EM_{n+2}-$ PP*]) are 7.4 ([HEM_{n+2}PP*]/[E]_t = 0.00081, [EM_{n+2}PP*]/ $[E]_t = 0.0055$) and 65 ($[HEM_{n+2}PP^*]/[E]_t = 0.00081$, $[EM_{n+2}PP^*]/[E]_t = 0$), respectively. Allowing K_{AB} to change stepwise between these limits and using the previous estimates of k_3 (1400 s⁻¹), k_4 (350 s⁻¹), and k_5 (800 s⁻¹) together with the measured value of P_c (0.35) (33), we found pairs of $k_{\rm A}$ and $k_{\rm 7}$ values simultaneously yielding $k_{\rm h}$, the catalytic constant for hydrolysis, of 259 s⁻¹ and [HEM_{n+2}- PP^*]/[E]_t of 0.129 at each K_{AB} value for Scheme 3. These simulations were done with the program Berkeley Madonna of R. I. Macey and G. F. Oster (available at www.berkeleymadonna.com). Finally, k_2 values corresponding to each pair of k_A and k_7 values were obtained with eq 13, using k_s , the catalytic constant for synthesis, of 4.2 s^{-1} (33), and the corresponding k_1 values were obtained with eq 13. At K_{AB} < 25, negative values of k_2 were obtained, narrowing the permissible K_{AB} range to 25–65. The values of all parameters obtained in this way are summarized in Scheme 3. The values of k_1 and k_6 are given in terms of total PP_i and MgP_i concentrations, respectively. Where ranges of parameters are shown, the first value is for $K_{AB} = 25$ and the second for $K_{\rm AB} = 65$. All the parameters changed monotonically within their ranges. From $K_{\rm AB} > 25$, one could calculate ([HEM_{n+2}-PP*] + [EM_{n+2}PP*])/[E]_t to be <0.00204 [0.053/(25 + 1)] and, hence, [EM_{n+2}PP*]/[E]_t < 0.00125 at equilibrium with P_i, setting the lower limit of p $K_{\rm ES}$ * at 7.0.

The value for the dissociation constant $K_F = 0.17-0.42$ mM² for the difluoride complex of EM_{n+1}P in Scheme 3 was obtained by multiplying the value of K_{F1} by the fraction of enzyme present as EM_{n+1}P at equilibrium with P_i (0.26; see above). In the hydrolysis reaction, only one fluoride ion is bound, and the dissociation constant of 0.19–0.62 mM for the resulting complex can be calculated from the value of K_{F1} (Table 1) and the fraction of enzyme present as EM_{n+1}P during steady-state hydrolysis (0.081–0.27, as obtained in the simulations). For comparison, the dissociation constant for the monofluoride complex of HEM_{n+2}PP* (k_7/k_1) is only 1.6 μ M.

The values of the parameters obtained allow the following conclusions to be made: (a) Values of k_A , k_3 , k_5 , and k_7 are similar, which means that the concentrations of the reaction intermediates present during hydrolysis are nearly equal. This distinguishes PPase as a highly efficient catalyst. (b) Consistent with this, the value of $k_h/K_{m,h}$ (3.8 × 10⁸ M⁻¹·s⁻¹) is greater than for any of the most efficient enzymes recently tabulated by Fersht (38). (c) In the direction of synthesis, the k_B step is exclusively rate-limiting at saturating magnesium phosphate concentration. Accordingly, the asterisked species are present in only small amounts (1–3% of the total enzyme), and the ratio of the dominant species, $[EM_{n+2}P_2]/[EM_{n+2}PP]$, is very close to K_{AB} .

REFERENCES

- Kornberg, A. (1962) in *Horizons in Biochemistry* (Kasha, M., and Pullman, B., Eds.) p 251, Academic Press, New York.
- Cooperman, B. S., Baykov, A. A., and Lahti, R. (1992) Trends Biochem. Sci. 17, 262

 –266.
- 3. Baykov, A. A., Cooperman, B. S., Goldman, A., and Lahti, R. (1999) *Prog. Mol. Subcell. Biochem.* 23, 127–150.
- 4. Kunitz, M. (1952) J. Gen. Physiol. 35, 423-450.
- Baykov, A. A., and Avaeva, S. M. (1973) Eur. J. Biochem. 32, 136–142.
- Welsh, K. M., Jacobyansky, A., Springs, B., and Cooperman, B. S. (1983) *Biochemistry* 22, 2243–2248.
- Baykov, A. A., Shestakov, A. S., Kasho, V. N., Vener, A. V., and Ivanov, A. H. (1990) Eur. J. Biochem. 194, 879

 –887.
- 8. Gonzalez, M. A., Webb, M. R., Welsh, K. M., and Cooperman, B. S. (1984) *Biochemistry* 23, 797–801.
- Janson, C. A., Degani, C., and Boyer, P. D. (1979) J. Biol. Chem. 254, 3743–3749.
- Hewitt, E. J., and Nichols, D. J. (1963) in *Metabolic Inhibitors* (Hochster, R. M., and Quastel, J. H., Eds.) pp 311–436, Academic Press, New York.

- 11. Smith, F. A. (1970) *Handbook of Experimental Pharmacology*, Vol. 2, Parts 1 and 2, Springer-Verlag, New York.
- 12. Pinkse, M. W. H., Merkx, M., and Averill, B. A. (1999) *Biochemistry* 38, 9926–9936.
- Smirnova, İ. N., and Baykov, A. A. (1983) *Biokhimiya 48*, 1643–1653.
- Baykov, A. A., Alexandrov, A. P., and Smirnova, I. N. (1992)
 Arch. Biochem. Biophys. 294, 238–243.
- Avaeva, S. M., Velichko, T. I., Vorobyeva, N. N., Kurilova, S. A., Nazarova, T. I., and Sklyankina, V. A. (1999) Biochemistry (Moscow) 64, 169-174.
- Morrisson, J. F., and Walsh, C. T. (1988) Adv. Enzymol. Relat. Areas Mol. Biol. 61, 201–301.
- Baykov, A. A., Bakuleva, N. P., Nazarova, T. I., and Avaeva,
 S. M. (1977) *Biochim. Biophys. Acta* 481, 184-194.
- 18. Baykov, A. A., Tam-Villoslado, J. J., and Avaeva, S. M. (1979) Biochim. Biophys. Acta 569, 228–238.
- Kurilova, S. A., Bogdanova, A. V., Nazarova, T. I., and Avaeva, S. M. (1984) *Bioorg. Khim.* 10, 1153–1160.
- Avaeva, S., Ignatov, P., Kurilova, S., Nazarova, T., Rodina, E., Vorobyeva, N., Oganessyan, V., and Harutyunyan, E. (1996) FEBS Lett. 399, 99–102.
- Heikinheimo, P., Pohjanjoki, P., Helminen, A., Tasanen, M., Cooperman, B. S., Goldman, A., Baykov, A., and Lahti R. (1996) Eur. J. Biochem. 239, 138–143.
- 22. Kolakowski, L. F., Jr., Schloesser, M., and Cooperman, B. S. (1988) *Nucleic Acids Res. 16*, 10441–10452.
- 23. Bradford, M. M. (1976) Anal. Biochem. 72, 248-254.
- Salminen, T., Käpylä, J., Heikinheimo, P., Kankare, J., Goldman, A., Heinonen, J., Baykov, A. A., Cooperman, B. S., and Lahti, R. (1995) *Biochemistry 34*, 782–791.
- Wong, S. C. K., Hall, D. C., and Josse, J. (1970) J. Biol. Chem. 245, 4335–4345.
- Baykov, A. A., and Avaeva, S. M. (1981) Anal. Biochem. 116, 1-4.
- Nýren, P., and Lundin, A. (1985) Anal. Biochem. 151, 504– 509.
- 28. Fabrichniy, I. P., Kasho, V. N., Hyytiä, T., Salminen, T., Halonen, P., Dudarenkov, V. Yu., Heikinheimo, P., Chernyak, V. Ya., Goldman, A., Lahti, R., Cooperman, B. S., and Baykov, A. A. (1997) *Biochemistry 36*, 7746-7753.
- 29. Aziz, A., and Lyle, S. (1969) Anal. Chim. Acta 47, 49-56.
- 30. Kohlrausch, F. (1908) Z. Phys. Chem. 64, 129-169.
- Baykov, A. A., Artjukov, A. A., and Avaeva, S. M. (1976) *Biochim. Biophys. Acta* 429, 982
 –992.
- Springs, B., Welsh, K. M., and Cooperman, B. S. (1981) *Biochemistry* 20, 6384–6391.
- Baykov, A. A., and Shestakov, A. S. (1992) Eur. J. Biochem. 206, 463–470.
- Kasho, V. N., and Baykov, A. A. (1989) Biochem. Biophys. Res. Commun. 161, 475–480.
- 35. Hackney, D. D. (1980) J. Biol. Chem. 255, 5320-5328.
- 36. Huang, C. Y. (1979) Methods Enzymol. 63, 54-84.
- 37. Cleland, W. W. (1975) Biochemistry 14, 3220-3224.
- Fersht, A. (1999) Structure and Mechanism in Protein Science, pp 125–127, 164–165, W. H. Freeman and Company, New York.

BI000627U